公為基藥訊172

1995 年 2 月創刊

發行人:陳 煒 編輯:賴輝雄、董秀花、賴玉琪、楊雅雯

總編輯:林慧娟 地址:嘉義市忠孝路 539 號 藥劑科 臨床藥學組

第1.5型糖尿病

洪瑄佑 藥師

一、背景

自體免疫性糖尿病(Latent

本期要目

- 1.第1.5型糖尿病……………洪瑄佑藥師
- 2. Nirsevimab新型呼吸道融合病毒單株抗體簡介
 -林姝芸藥師
- 3. Vincristine引起小兒眼瞼下垂(ptosis)之案例報告

·················許育瑋藥師

autoimmune diabetes of adults; LADA) 是一種成年人發生的特殊型自體免疫性第1型糖尿病,通常好發於30歲以上的成年人,由於許多患者在首次出現症狀時,年齡較大且糖類代謝控制不佳,他們往往被誤診為第2型糖尿病。然而與第2型糖尿病患者不同的是,許多LADA患者並沒有典型的第2型糖尿病患者的特徵,如肥胖和胰島素阻抗。

關於 LADA 的診斷和分類存在混淆性,因患者同時表現出第1型和第2型糖尿病的症狀,且通常在成年時發病,故它被稱為「成年人遲發自體免疫性糖尿病」、「緩慢發展型第1型糖尿病」和「第1.5型糖尿病」,而世界衛生組織將 LADA 列為第1型糖尿病。

二、流行病學

LADA常被誤診為第2型糖尿病,其誤診率約為5-10%,LADA發病率被低估,誤診為第2型糖尿病可能高達6%至50%,尤其於年輕患者中患病率較高,鑒於年輕族群高好發率,識別LADA顯得非常重要,因為這些患者比抗體陰性患者更容易發展為胰島素依賴型糖尿病,這導致多種口服藥物治療失敗結果。

LADA與胰島細胞的循環抗體有關,最常見的是谷氨酸脫羧酶 (glutamic acid decarboxylase, GAD),由於LADA患者特有自體免疫性 β 細胞破壞形式,LADA患者初期不需要胰島素治療,但大多數LADA患者在 β 細胞功能下降後3年內最終需要使用胰島素,尤其是胰島細胞自體抗體(islet autoantibody)呈現陽性的LADA患者,其更可能經歷加速的 β 細胞衰竭。

三、診斷

LADA診斷通常基於 3 個標準:(1)發病年齡通常大於 30歲以上 (2)存在循環抗體,以及 (3)診斷後至少 6 個月內不需要胰島素治療。這種類型的糖尿病病因傾向環境觸發和遺傳因素相關。LADA的患者通常像胰島細胞受損的患者一樣,體內C-Peptide水平較低從而減少胰島素的產量,而第 2型糖尿病患者通常具有正常或較高的C-Peptide水平,隨著疾病的進展LADA患者需要胰島素治療。值得注意的是,與典型的第 2 型糖尿病患者不同,LADA患者通常缺乏第2型糖尿病家族病史,LADA患者對胰島素的需求比第2型糖尿病患者還要來得更快,LADA患者往往更缺乏胰島素,而不是胰島素阻抗(insulin resistant)¹。

表一、ADA指引降血糖藥物(院內品項)

	_			ata Quality	y Assessmo	ent
Classification	Drug name	Ingredient name	Limitations Coherence	Relevance	Adequacy	Overall
Insulin Sensitizers						
Biguanid(BG) Thiazolidinediones	Glucophage Actos	metformin pioglitazone	moderate	moderate	minor	low
	Actrapid HM Humalog mix25 Humalog mix50	Regular insulin insulin lispro/ lispro protamine				
	Insulatard	NPH insulin				
Insulin	NovoMix 30	insulin aspart/ aspart protamine	moderate	high	moderate	moderate
	NovoRapid	insulin aspart				
	Ryzodeg Soliqua	insulin degludec / insulin aspart lixisenatide/ insulin glargine	t			
	Toujeo Tresiba	insulin glargine insulin degludec				
Sulfonylureas	Amaryl Diamicron MR	glimepiride gliclazide	moderate	high	minor	moderate
	Glidiab	glipizide				
Dipeptidyl Peptidase 4	Trajenta	linagliptin	moderate	high	moderate	moderate
Inhibitors. (DPP4i)	Galvus	vildagliptin	moderate	mgn	moderate	moderate
Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i)	Canaglu Forxiga Jardiance	canagliflozin dapagliflozin empagliflozin	low	high	low	moderate
Glucagon-Like Peptide 1 Receptor Agonists. (GLP- 1RA)	Saxenda Ozempic Rybelsus Trulicity Victoza	liraglutide semaglutide semaglutide dulaglutide liraglutide	low	high	moderate	moderate
Combination						
Combination	GalvusMet	vildagliptin /metformin				
DPP4i/Biguanid	Janumet	sitagliptin /metformin				
DPP4i/TZD	Oseni	alogliptin /pioglitazone				
SGLT2i/DPP4i	Qtern	saxagliptin /dapagliflozin				
	Glyxambi	empagliflozin /linagliptin				
SGLT2i/Biguanid	Jardiance Duo	empagliflozin/metformin				
	Xigduo XR	dapagliflozin/metformin				
SU/Biguanid	Amaryl M	glimepiride/metformin				
GLP1A/Insulin	Soliqua	lixisenatide/ insulin glargine				

四、治療

根據The American Diabetes Association (ADA)美國糖尿病臨床指引,推薦的降血糖藥物整理如表一:

- ◆胰島素增敏劑 (biguanid、thiazolidinediones, TZD):雖然目前對支持metformin使用的證據有限;TZD則可能可以保留胰島β細胞功能,但需進一步的研究加以確認。
- ◆胰島素:在LADA的代謝控制上,顯示出具有效性,但對於最佳干預時機仍然存在不確定性。
- ◆Sulfonylureas (SU):由於對β細胞功能可能產生負面影響,其使用受到限制,一般不被推薦用於LADA。
- ◆Dipeptidyl Peptidase 4 Inhibitors, DPP4i:在保持卓越安全性的同時,有望改善血糖控制,然而仍需更大規模的研究確認對C-Peptide的實質影響。
- ◆Sodium-Glucose Cotransporter 2 Inhibitors, SGLT2i: 儘管具有潛在前景,但應該謹慎考慮其可能帶來的風險(例:酮酸中毒),對於LADA尚缺乏具體研究,需更進一步深入研究。
- ◆Glucagon-Like Peptide 1 Receptor Agonists, GLP-1RA:在改善LADA患者的代謝控制方面表現出積極效果,但這需要更大規模的臨床試驗來進一步確認。

五、參考資料

- 1. Buzzetti R, Tuomi T, Mauricio D, et al. Management of Latent Autoimmune Diabetes in Adults: A Consensus Statement From an International Expert Panel. Diabetes. 2020;69(10):2037-2047. doi:10.2337/dbi20-0017
- 2. Kapustin J. Latent Autoimmune Diabetes in Adults. J Nurse Pract. 2008;4(9):681-687. doi:10.1016/j.nurpra.2008.06.004
- 3. 嘉義基督教醫院藥劑科藥理分類查詢系統

Nirsevimab 新型呼吸道融合病毒單株抗體簡介

林姝芸 藥師

一、前言

呼吸道融合病毒(respiratory syncytial virus, RSV)是一種單股核糖核酸 (RNA) 病毒,存在兩個亞型:A亞型和B亞型,其中A亞型容易導致較嚴重的感染。RSV通常會在世界各地引起季節性流行,例如在溫帶國家,流行期較常見發生於冬季至早春;而在亞熱帶的台灣,RSV流行的季節並不明顯,一年十二個月中均有病例。RSV主要是透過飛沫傳染,例如咳嗽、打噴嚏所產生的飛沫,或接觸到含有病毒的分泌物或污染物,病毒潛伏期通常是4到6天。

呼吸道融合病毒是嬰幼兒最常見的下呼吸道疾病,也是導致支氣管炎或肺炎住院的最主要原因,大多數感染都在1歲以下。根據衛生福利部疾病管制署2024年的統計數據,在台灣每年約有1,000名嬰幼兒,因感染呼吸道融合病毒而住院,其中高達九成的病例為兩歲以下的嬰幼兒。Nirsevimab (Beyfortus®)是一種針對呼吸道融合病毒的新型單株抗體,用來預防嬰幼兒首次 RSV 季節期間發生的下呼吸道感染 (lower respiratory tract infection, LRTI),在 2022 年 11 月歐盟核准上市,以及 2023 年 7 月美國 FDA 核准上市。

二、作用機轉

Nirsevimab是基因重組的人類IgG1 kappa單株抗體(monoclonal antibodies, mAbs),能與前融合蛋白(prefusion F-protein)上的抗原位點Ø結合,F-protein是一種病毒表面糖蛋白,

在病毒感染過程中負責融合病毒膜與宿主細胞膜,將病毒基因物質注入宿主細胞內,從而導致宿主細胞感染。Nirsevimab透過阻止F- protein構造型態的改變(conformation)來抑制病毒的融合和感染,達到中和RSV的效果。相較於已在臨床應用的palivizumab(Synagis®),nirsevimab具有以下優勢:更高的親和力和中和活性、以及較長的半衰期(大約71天),能夠在單次給藥後維持較長時間的抗病毒作用。

三、臨床療效

根據nirsevimab在第2b期以及第3期MELODY臨床試驗中(表一),不論健康早產嬰兒或是足月嬰兒,出生後在RSV季節之前給予一劑nirsevimab,可以有效預防給藥後150天內的 medically attended RSV-associated lower respiratory tract infection (MA RSV LRTI)發生率,以及降低給藥後150天內由於RSV LRTI導致的住院率。

Nirsevimab 上市後,根據衛生署傳染病防治諮詢委員會預防接種組 (Advisory Committee for Immunization Practices, ACIP) 和美國兒科學會 (American Academy of Pediatrics, AAP) 建議,nirsevimab可與其他疫苗同時接種於不同部位,包括所有非活性疫苗與活性減毒疫苗。如果媽媽在懷孕32-36週時接種過RSV的疫苗(RSVpreF Pfizer),並且疫苗接種與生產的間隔大於14天,則不建議嬰幼兒注射nirsevimab。

表一、第2b期、第3期MELODY臨床試驗結果

	Phase 2b trial	Phase 3 MELODY trial
收錄對象	1. 早產嬰兒孕齡 29-36 週 2. 年齡≦1 歲	 晚期早產嬰兒孕齡≥35 週 年齡≤1 歲
人數	Nirsevimab: 969; Placebo: 484	Nirsevimab: 2009; Placebo: 1003
劑量	單次肌肉注射 50mg	\geq 5kg : 100mg; < 5kg : 50mg
主要結果: 150	天內對 MA RSV LRTI 的療效	
RR (95% CI)	70.1% (52.3 to 81.2)	74.5% (49.6 to 87.1)
P value	P<0.001	P<0.001
次要結果:150	天內對 RSV LRTI 導致住院的療效	
RR (95% CI)	78.4% (51.9 to 90.3)	62.1% (-8.6 to 86.8)
P value	P<0.001	P=0.07

四、安全性

在nirsevimab第2b期和第3期臨床試驗中,nirsevimab和安慰組不良反應的發生率相似,其中最常見的不良反應是皮疹(0.9%)和注射部位反應

五、結論

自1998年palivizumab上市以來,經過20年的研發,終於在2022年推出了新的長效單株抗體nirsevimab,這使得新生嬰幼兒在第一次面對RSV季節時能夠獲得更全面的保護。儘管目前在台灣尚未獲得核准上市,但相信不久後就會有好消息,並期待nirsevimab在台灣RSV感染預防中發揮重要作用。

六、參考資料

- 1. Frederick E Barr, Barney S Graham. Respiratory syncytial virus infection: Clinical features and diagnosis in infants and children. Post TW(Ed), UpToDate, Waltham, MA (Accessed on June 10, 2024.)
- 2. Laura L. Hammitt, M.D., Ron Dagan. Nirsevimab for Prevention of RSV in Healthy Late-Preterm and Term Infants Molecular. N Engl J Med 2022;386:837-846.
- 3. M. Pamela Griffin, M.D., Yuan Yuan. Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants. N Engl J Med 2020 Jul 30;383(5):415-425.
- 4. Advisory Committee on Immunization Practices, American Academy of Pediatrics. ACIP and AAP Recommendations for Nirsevimab. August 15, 2023.

Vincristine引起小兒眼瞼下垂(ptosis)之案例報告

許育瑋 藥師

一、前言

Vincristine是一種常與其他藥物合併使用,用於治療兒童惡性腫瘤的長春花鹼類(vinca alkaloids)藥物。Vincristine所造成的神經毒性可能導致周邊神經、自主神經和顱神經的多發性神經病變,極少數的情況甚至可引起腦病變,而涉及動眼神經 (oculomotor)、滑車神經 (trochlear nerve) 和顏面神經 (facial nerves) 的顱神經麻痺 (Cranial nerve palsies)比周邊神經病變更為少見。而在眼部表現中,眼瞼下垂 (ptosis)和眼肌麻痺是最常出現的表現態樣。

二、案例治療經過

本案例是一位18個月大的女性幼兒,診斷為蘭格罕氏組織細胞增生症 (Langerhans Cell Histiocytosis, LCH)伴有中樞神經系統、骨骼、皮膚、淋巴結和胸腺的侵犯。腦部磁振造影檢查 (MRI) 顯示左側上眶緣、左側下顯凸和左下頜區有多發性腫塊和骨骼病變,但是沒有神經退化性疾病的證據。從2022年12月1日起,該案例接受每週1.5 mg/m²的 vincristine和每天40 mg/m²的prednisolone進行第一次的誘導治療。誘導治療開始後的第45天 (vincristine累計劑量10.5 mg/m²) 時,出現雙側眼瞼下垂,且下垂的程度在一天中的各個時間點都沒有明顯的變化,經評估後強烈懷疑與vincristine相關的顱神經病變有關。

三、討論

1. Vincristine的神經毒性

神經毒性是長春花鹼類、鉑類及紫杉醇類等化療藥物常見的不良反應。而vincristine 是長春花鹼類藥物中常用於治療小兒癌症的藥物,其作用機制與抗微管活性有關,在這類 藥物中vincristine的神經毒性最強。神經毒性是vincristine一種嚴重且與劑量限制有關的副 作用,可能導致治療延遲或中斷。

Vincristine神經毒性的發生率約為3%到13%左右,其中神經元的軸突傳輸功能受損是 vincristine引起神經毒性的主要機轉之一,其中又以遠端軸突更容易受到vincristine毒性作 用的影響,機轉可能與軸突內微管被破壞並干擾軸突運輸,而導致的軸突神經病變有關。 這類神經病變涉及感覺和運動纖維,尤其是小型感覺纖維最容易受到影響(表一),會造成 周邊、進行性(幾乎是由遠端向近端)和對稱性的神經損傷。

2.神經毒性的表現

Vincristine引起的神經病變通常較輕微,嚴重併發症如部分或完全癱瘓的情況極為罕見。神經毒性與vincristine的劑量有關,並隨著劑量的累積而增加,症狀通常在開始使用vincristine後的2至19週內出現。另外若同時使用其他藥物如allopurinol、erythromycin、phenytoin及itraconazole這類CYP3A4抑制劑,也會加重副作用發生的機會及嚴重度。

Vincristine引起的神經毒性在一開始的客觀感覺異常通常相對較輕微,常出現有深部腱反射消失、神經痛、感覺異常以及腕下垂和足下垂的情況。大多數vincristine引起的神經病變在調整劑量或停止治療後是可逆的,僅有極低的比例會持續存在。儘管vincristine穿過血腦屏障進入中樞神經系統的比例很低,但仍可能影響顱神經引起局部單神經病變,出現像是眼瞼下垂 (Ptosis)、眼肌麻痺、色覺缺陷、失明和視力模糊、複視、斜視、眼肌麻痺…等狀況,極少數可能出現包括顱神經麻痺、暫時性皮質盲、動眼神經功能障礙、下領痛、面神經麻痺、感音神經性聽力損失和喉神經麻痺的情形。

表一. 長春花鹼類藥物對各類神經之影響

藥物		響神經之類別與			復原狀況
未 物	感覺神經	運動神經	反射神經	自主神經	1文/示 7人//
長春花鹼類 Vincristine Vinblastine Vinorelbine Vindesine	遠端感覺喪失通常發生在下肢,很少影響上肢; Vinblastine 及 vinorelbine 的神經毒性較低。 Vincristine 極少出現單神 經病變。		早期減少或消失	常見便秘(尤其 是 vincristine), 直立性低血壓 較少見	通常在三個月內 恢復;使用 vincristine 可能 持續較久

3. Ptosis的治療

Vincristine 引起的神經病變通常是可逆的,但恢復可能需要數週甚至數月的時間,其中兒童往往比成年人更快恢復。而在化療引起的周邊神經病變中,沒有明確的規則來決定何時應該改變或停止藥物治療。一般認為,如果化療能夠治愈患者的癌症,化療引起的神經毒性可能可以在不改變有效劑量的情況下被容忍;亦會根據不良反應分級標準來決定是否繼續使用藥物,當出現嚴重感覺和運動缺陷的第 3-4 級神經毒性時,應嚴肅考慮其他替代治療方法。

治療vincristine相關的神經病變多以減少劑量、停用藥物及症狀治療為主。然而,由於對vincristine神經病變的病生理機轉尚未完全了解,目前就其所引起眼瞼下垂(ptosis)的預防和治療上並沒有明確的指引,且多數的文獻都以案例報告居多,在這些文獻中多以pyridoxine、pyridostigmine或thiamine進行症狀治療,多數患者在治療後都可完全恢復(表二)。

Pyridoxine是神經蛋白和神經傳遞因子合成的必需輔因子,pyridoxine對周邊神經的作用機制尚不完全清楚,但已知它參與許多神經功能的生化途徑,包括神經傳遞物質合成、氨基酸代謝和鞘脂的生成和降解。而thiamine在神經膜傳導、神經傳遞物質合成和線粒體能量生成中有一定之角色,在神經膜傳導中,thiamine被認為能活化離子傳遞,並參與通過鈉通道調節和acetylcholine釋放的神經衝動傳遞。有研究認為thiamine透過減少過度興奮性,和減少受損背根神經節神經元中的鈉電流變化來抑制熱痛覺過敏。因此,thiamine可以幫助神經軸突再生、減少疼痛,並幫助平衡鈉電流。至於pyridostigmine則是一種合成的四級胺化合物,通過抑制神經肌肉接合處的acetylcholinesterase來增加內源性acetylcholine的濃度,而增強肌肉力量。Pyridostigmine在過去已被用於治療vincristine相關神經病變中的胃腸活動力減弱。

在相關的案例報告中,pyridoxine、thiamine或pyridostigmine在vincristine引起眼瞼下垂的恢復上似乎有其幫助。而我們的案例在出現雙側眼瞼下垂後即暫停vncristine的療程,並以與文獻上相近的劑量,每週一次 40mg (5mg/kg) 的 thiamine,以及每日一次 40mg (5mg/kg) 的 pyridoxine 進行治療。眼瞼下垂在開始補充 thiamine 和 pyridoxine 後四週內恢復,且無發生任何副作用。後續MRI檢查顯示雙側視神經對稱且視交叉外觀正常,接著在隨後的治療中,則改以vinblastine取代vincristine進行LCH的治療,後續並未再出現眼瞼下的情況。

四、結論

Vincristine 引起的眼瞼下垂是一種罕見的併發症。本案例在累計使用10.5 mg/m²的 vincristine 後出現了雙側部分性眼瞼下垂,在暫停vincristine的使用並補充一個月的 pyridoxine和thiamine後,眼瞼下垂的情況完全恢復,且沒有發生相關副作用。由於兒童不易自我察覺及反應藥物產生的副作用,因此接受長春花鹼治療的兒童,需要密切監測各項副作用發生的可能性,目前vincristine引起的眼瞼下垂並沒有明確的預防或治療方式, pyridoxine和thiamine可能是vincristine引起眼瞼下垂時,一種安全且有效的治療選擇。

五、參考文獻

- 1. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and Pyridostigmine in a child with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol. 2012 Jul;33(3):185-7.
- 2. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and Pyridostigmine in a child with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol. 2012 Jul;33(3):185-7.
- 3. Overview of neurologic complications of conventional non-platinum cancer chemotherapy(UptoDate)
- 4. Vincristine-Induced Peripheral Neuropathy (VIPN) in Pediatric Tumors: Mechanisms, Risk Factors, Strategies of Prevention and Treatment. Int J Mol Sci. 2021 Apr 16;22(8):4112
- 5. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and Pyridostigmine in a child with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol. 2012 Jul;33(3):185-7.
- 6. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and Pyridostigmine in a child with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol. 2012 Jul;33(3):185-7.
- 7. Combination of Pyridoxine and Thiamine Treatment in Bilateral Induced Ptosis in a Child: Case Report and Review of Literature. Cureus. 2017 Aug 16;9(8):e1573.
- 8. Overview of neurologic complications of conventional non-platinum cancer chemotherapy(UptoDate)
- 9. Vincristine-Induced Peripheral Neuropathy (VIPN) in Pediatric Tumors: Mechanisms, Risk Factors, Strategies of Prevention and Treatment. Int J Mol Sci. 2021 Apr 16;22(8):4112
- 10. Combination of Pyridoxine and Thiamine Treatment in Bilateral Induced Ptosis in a Child: Case Report and Review of Literature. Cureus. 2017 Aug 16;9(8):e1573.
- 11. Successful Treatment of Vincristine Induced Unilateral Ptosis with Pyridoxine and Pyridostigmine in a Child with Langerhans Cell Histiocytosis (LCH). Eur J Gen Med 2016; 13(1): 67-69
- 12. Overview of neurologic complications of conventional non-platinum cancer chemotherapy(UptoDate)
- 13. Successful Treatment of Vincristine Induced Unilateral Ptosis with Pyridoxine and Pyridostigmine in a Child with Langerhans Cell Histiocytosis (LCH). Eur J Gen Med 2016; 13(1): 67-69
- 14. Successful treatment of vincristine induced ptosis and polyneuropathy with pyridoxine and Pyridostigmine in a child with acute lymphoblastic leukemia. Indian J Med Paediatr Oncol. 2012

作	年份	年龄/	Ptosis 型態	Vincristine 累計劑量	治療方式	結果
Ozgur Duman et al.	2005 4/男	4/男	雙側	8.8 mg	Pyridoxine: 150 mg/m ² /day	經過 5 天的治療後顯著改善,並在 20
				(9.8 mg/m^2)		天後消失(僅剩左側輕微的眼瞼下垂)
Gursel, et al.	2009	4/女	單側	6 mg/m^2	Observation	6 週後完全恢復
Dejan, et al.	2009 5/男	5/男	單側	10.5mg	Pyridoxine: 150 mg/m ² BID	2 週後明顯改善; 4 週後完全恢復
				(4.5 mg/m^2)	Pyridostigmine: 3 mg/kg BID	
Bhat, et al.	2012	2/女	雙侧	2.8mg	Pyridoxine: 3 mg/kg BID	2 週後明顯改善; 4 週後完全恢復
					Pyridostigmine: 150 mg/m ² BID	
Akbayram, et al.	2013	3/女	單側	7.5mg	Pyridoxine: 150 mg/m ² /day,	2 週後明顯改善; 4 週後完全恢復
				(12.6 mg/m^2)	Pyridostigmine: 3 mg/kg/day	
Pandey, et al.	2013	3/女	雙側	7.5mg	Pyridoxine: 3 mg/kg BID	10 天後明顯改善;3 週後完全恢復
				(7.5 mg/m^2)	Pyridostigmine: 150 mg/m²/day, BID	
Batt, et al.	2013	1.3/女	單側	4.5mg	None	直到降低 Vincristine 劑量後才恢復
Olcaysu, et al.	2014	11/男	雙側	6.35mg	Pyridostigmine: 60 mg, BID	10 天後明顯改善; 3 週後完全恢復
					Pyridoxine: 150 mg BID	
Talebian, et al.	2014 2.5/男	2.5/男	雙側	3.015 mg	Pyridoxine: 150 mg/m ² BID	1週後完全恢復
					Pyridostigmine: 3 mg/kg BID	
Hatzipantelis, et al.	2015	6/男	雙側	14.2 mg	Pyridoxine: 10 mg/kg QD	4 週後完全恢復
				(17.75mg/m^2)	Thiamine: 5 mg/kg QD	
Karaman, et al.	2016	2/男	單側	3.75 mg	Pyridoxine: 150 mg/m ² /day	2 週後明顯改善; 3 週後完全恢復
				(7.5 mg/m^2)	Pyridostigmine: 3 mg/kg/day	
Chai, et al.	2017	2/NDA	雙側	3.5 mg	Gabapentin: 100 mg BID-TID	4 週後完全恢復
				(0.36 mg/kg)	Folic acid: 0.25 mg QD	
					Pyridoxine: 10 mg/kg QD	
					Thiamine: 5 mg/kg QD	
					Cyanocobalamin: 10 mg/kg QD	

NDA: no data available